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Abstract

An MPI profiling library is a standard mechanism for inter-
cepting MPI calls by applications. Profiling libraries are so
named because they are commonly used to gather runtime
information about performance characteristics. Here we
present a profiling library whose purpose is to detect user
errors in the use of MPI’s collective operations. While some
errors can be detected locally (by a single process), other
errors involving the consistency of arguments passed to
MPI collective functions must be tested for in a collective
fashion. While the idea of using such a profiling library does
not originate here, we take the idea further than it has been
taken before (we detect more errors, including those
involving datatype inconsistencies) and present an open-
source library that can be used with any MPI implementa-
tion. We describe the tests carried out, provide some
details of the implementation, illustrate the usage of the
library, and present performance tests.

Key words: MPI, collective, errors, datatype, hashing

1 Introduction

One measure of the quality of a software system is its abil-
ity to identify user errors at an early stage and provide suf-
ficient information for the user to correct the error. To this
end, all high-quality implementations of the Message
Passing Interface (MPI) Standard (Gropp et al. 1998; Snir
et al. 1998) provide for runtime checking of arguments
passed to MPI functions to ensure that they are appropri-
ate and will not cause the function to behave unexpectedly
or even cause the application to crash. The MPI collective
operations, however, present a special problem: they are
called in a coordinated way by multiple processes, and the
Standard mandates (and common sense requires) that the
arguments passed on each process be consistent with the
arguments passed on the other processes. Perhaps the sim-
plest example is the case of MPI_Bcast:

MPI_Bcast(buff, count, datatype, root, 
  communicator)

in which each process must pass the same value for
root. In this case, “consistent” means “identical,” but
more complex types of consistency exist. No single proc-
ess by itself can detect inconsistency; the error check
itself must be a collective operation.

Fortunately, the MPI profiling interface allows one to
intercept MPI calls and carry out such a collective check
before carrying out the “real” collective operation specified
by the application. In case of an error, the error can be
reported in the way specified by the MPI Standard, still
independently of the underlying MPI implementation, and
without access to its source code.

The MPI profiling interface consists primarily of a
requirement in the MPI Standard that all MPI functions
(normally called by application programs using function
names employing the “MPI_” prefix) be also callable with
a name using the corresponding “PMPI_” prefix. This sim-
ple requirement allows a library writer, without access to
the source code of the MPI implementation, to intercept
all MPI calls by interposing at link time his own library
of “MPI_” functions, which carry out some useful spe-
cialized operation devised by the library writer. The spe-
cialized functions call “PMPI_” functions required by the
application. Such a special library of “MPI_” functions
is called a profiling library.
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156 COMPUTING APPLICATIONS

The profiling library we describe here is freely availa-
ble as part of the MPICH2 MPI-2 implementation.1 Since
the library is implemented entirely as an MPI profiling
library, however, it can be used with any MPI implemen-
tation. For example, we have tested it with IBM’s MPI
implementation for Blue Gene/L (Almási et al. 2003) and
OpenMPI.2

The idea of using the MPI profiling library for this
purpose was first presented by Träff and Worringen
(2004), who describe the error-checking approach taken
in the NEC MPI implementation, in which even local
checks are done in the profiling library, some collective
checks are done portably in a profiling library as we
describe here, and some are done by making NEC-spe-
cific calls into the proprietary MPI implementation layer.
The datatype consistency check in Träff and Worringen
(2004) is only partial, however; the sizes of communica-
tion buffers are checked, but not the details of the
datatype arguments, where there is considerable room for
user error. Moreover, the consistency requirements are
not on the datatypes themselves, but on the datatype sig-
natures, we say more about this in Section 3.1.

To address this area, we use a “datatype signature hash-
ing” mechanism, devised by Gropp (2000). He describes a
family of algorithms that can be used to assign a small
amount of data to an MPI datatype signature in such a way
that only small messages need to be sent in order to catch
most user errors involving datatype arguments to MPI
collective functions. In this paper we describe a specific
implementation of datatype signature hashing and present
an MPI profiling library that uses datatype signature hash-
ing to carry out more thorough error checking than was
done by Träff and Worringen (2004). Since extra work (to
calculate the hash) is involved, we also present some sim-
ple performance measurements, although one can of course
use this profiling library just during application develop-
ment and remove it for production use. An earlier, compact
version of this paper appeared in Falzone et al. (2005).

In Section 2 we describe the nature and scope of the
error checks we carry out and compare our approach with
that of Träff and Worringen (2004). Section 3 lays out
details of our implementation, including our implementa-
tion of the hashing algorithm given by Gropp (2000); we
also describe how usage of the library is made convenient
in the MPICH2 environment and show some example out-
put. In Section 4 we present some performance measure-
ments. Section 5 describes areas in which we intend to
extend and improve the capabilities of the library. Section 6
summarizes the paper.

2 Scope of Checks

In this section we describe the error checking carried
out by our profiling library. We give definitions of each

check and provide a table associating the checks made
on the arguments of each collective MPI function with
that function. We also compare our collective error
checking with that described by Träff and Worringen
(2004).

2.1 Definitions of Checks

The error checks for each MPI collective function are
shown in Tables 1 and 2. There are five categories of
tests; these are described below:

Table 1
Checks performed on MPI-1 functions.

MPI_Barrier call

MPI_Bcast call, root, datatype

MPI_Gather call, root, datatype

MPI_Gatherv call, root, datatype

MPI_Scatter call, root, datatype

MPI_Scatterv call, root, datatype

MPI_Allgather call, datatype, 
MPI_IN_PLACE

MPI_Allgatherv call, datatype, 
MPI_IN_PLACE

MPI_Alltoall call, datatype

MPI_Alltoallw call, datatype

MPI_Alltoallv call, datatype

MPI_Reduce call, datatype, op

MPI_AllReduce call, datatype, op, 
MPI_IN_PLACE

MPI_Reduce_scatter call, datatype, op, 
MPI_IN_PLACE

MPI_Scan call, datatype, op

MPI_Exscan call, datatype, op

MPI_Comm_dup call

MPI_Comm_create call

MPI_Comm_split call

MPI_Intercomm_create call, local leader, tag

MPI_Intercomm_merge call, high/low

MPI_Cart_create call, dims

MPI_Cart_map call, dims

MPI_Graph_create call, graph

MPI_Graph_map call, graph
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These checks apply to most collective routines:

call checks that all processes in the communicator have
called the same collective function in a given event,
thus guarding against the error of calling MPI_
Reduce on some processes, for example, and MPI_
Allreduce on others.

root means that the same argument was passed for the
root argument on all processes.

datatype refers to datatype signature consistency. This
test ensures both that the counts and the datatypes
are consistent in the collective call. This is explained
further in Section 3.1.

The following applies only to collective computation
and some collective communication routines:

MPI_IN_PLACE means that every process either did or
did not provide MPI_IN_PLACE instead of a buffer.

op checks operation consistency, for collective opera-
tions that include computations. For example, each
process in a call to MPI_Reduce must provide the
same operation.

The following apply only to intercommunicator create
and merge:

local leader and tag test consistency of the local_
leader and tag arguments. They are used only for
MPI_Intercomm_create.

high/low tests consistency of the high argument. It is
used only for MPI_Intercomm_merge.

The following apply only to collective topology routines:

dims checks for dims consistency across the communi-
cator.

graph tests the consistency of the graph supplied by the
arguments to MPI_Graph_create and MPI_
Graph_map.

The following apply only to collective I/O operations:

amode tests for amode consistency across the communi-
cator for the function MPI_File_open.

size, datarep, and flag verify consistency on these argu-
ments, respectively.

etype is an additional datatype signature check for MPI
file operations.

order checks for the collective file read and write functions,
therefore ensuring the proper order of the operations.
According to the MPI Standard (Gropp et al. 1998),
a begin operation must follow an end operation,
with no other collective file functions in between.

One check that is not included in this table is that the
same communicator is passed by each of the processes

Table 2
Checks performed on MPI-2 functions.

MPI_Comm_spawn call, root

MPI_Comm_spawn_multiple call, root

MPI_Comm_connect call, root

MPI_Comm_disconnect call

MPI_Win_create call

MPI_Win_fence call

MPI_File_open call, amode

MPI_File_set_size call, size

MPI_File_set_view call, datarep, 
etype

MPI_File_set_automicity call, flag

MPI_File_preallocate call, size

MPI_File_seek_shared call, order

MPI_File_read_all_begin call, order

MPI_File_read_all call, order

MPI_File_read_all_end call, order

MPI_File_read_at_all_begin call, order

MPI_File_read_at_all call, order

MPI_File_read_at_all_end call, order

MPI_File_read_ordered_begin call, order

MPI_File_read_ordered call, order

MPI_File_read_ordered_end call, order

MPI_File_write_all_begin call, order

MPI_File_write_all call, order

MPI_File_write_all_end call, order

MPI_File_write_at_all_begin call, order

MPI_File_write_at_all call, order

MPI_File_write_at_all_end call, order

MPI_File_write_ordered_begin call, order

MPI_File_write_ordered call, order

MPI_File_write_ordered_end call, order
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making the collective call, and that all processes in the
communicator are making the call. An approach to han-
dling this is proposed in Section 5.

2.2 Comparison with Previous Work

This work can be viewed as an extension of the NEC
implementation of collective error checking via a profil-
ing library presented by Träff and Worringen (2004). The
largest difference between that work and this is that we
incorporate the datatype signature hashing mechanism
described in Section 3, which makes this paper also an
extension of Gropp (2000), where the hashing mechanism
is described but not implemented. In the NEC implemen-
tation, only message lengths, rather than datatype signa-
tures, are checked. We do not check length consistency
since it would be incorrect to do so in a heterogeneous
environment. We also implement our library as a pure
profiling library. This precludes us from doing some MPI-
implementation-dependent checks that are provided in the
NEC implementation, but allows our library to be used
with any MPI implementation. In this paper we also
present some performance tests, showing that the over-
head, even of our unoptimized version, is acceptable.
Finally, the library described here is freely available.

3 Implementation

In this section we describe our implementation of the
datatype signature matching presented by Gropp (2000).
We also show how we use datatype signatures in coordina-
tion with other checks on collective operation arguments.

3.1 Datatype Signature Matching

In MPI, the amount of data to send or receive is described
by the tuple (count, datatype) that indicates count
copies of the datatype are used to describe the data.
Because datatypes in MPI may be built from combina-
tions of basic datatypes (such as MPI_INT), the number
of basic items that are communicated cannot be deter-
mined from the count alone. Instead, the number and
type of basic types must be compared (basic types are just
the MPI counterparts of the basic types in the language;
e.g. MPI_INT corresponds to the C int type). The basic
types within an MPI datatype are called the MPI datatype
signature of that MPI datatype. More formally, an MPI
datatype signature for a datatype constructed from n dif-
ferent basic datatypes typei is simply

Typesig = {type1, type2, …, typen}. (1)

(In MPI, the type map combines the information on the
basic types and the displacement in memory that is to be

used in reading or writing the data from or to memory;
the displacement information is not relevant in our
checks.)

A datatype hashing mechanism was proposed by
Gropp (2000) to allow efficient comparison of datatype
signature over any MPI collective call. Essentially, it
involves comparison of a tuple (α, n), where α is the
hash value and n is the total number of basic predefined
datatypes contained in it. A tuple of form (α, 1) is
assigned for each basic MPI predefined datatype (e.g.
MPI_INT), where α is some chosen hash value. The
tuple for an MPI derived datatype consisting of n basic
predefined datatypes (α, 1) becomes (α, n). The com-
bined tuple of any two MPI derived datatypes, (α, n) and
(β, m), is computed based on the hashing function:

(α, n)  (β, m)  (α  (β n), n + m), (2)

where  is the bitwise exclusive or (xor) operator,  is
the circular left shift operator, and + is the integer addi-
tion operator. The noncommutative nature of the operator

 in equation (2) guarantees the ordered requirement in
datatype signature definition (equation 1).

One of the obvious potential hash collisions is caused
by the  operator’s circular shift by 1 bit. Let us say there
are four basic predefined datatypes identified by tuples
(α, 1), (β, 1), (γ, 1), and (λ, 1) and that α = λ 1 and
γ = β 1. For n = m = 1 in equation (2), we have

(α, 1)  (β, 1)  (α (β 1), 2)

  ((β 1)  α, 2)

  (γ (λ 1), 2)

  (g, 1)  (λ, 1) (3)

If the hash values for all basic predefined datatypes are
assigned consecutive integers, there will be roughly a 25
percent collision rate as indicated by equation (3). The
simplest solution for avoiding this problem is to choose con-
secutive odd integers for all the basic predefined datatypes.
Also, there are composite predefined datatypes in the
MPI standard (e.g. MPI_FLOAT_INT), whose hash val-
ues are chosen according to equation (2) such that

MPI_FLOAT_INT = MPI_FLOAT  MPI_INT.

The tuples for MPI_UB and MPI_LB are assigned (0, 0),
so they are essentially ignored. MPI_PACKED is a spe-
cial case, as described by Gropp (2000).

More complicated derived datatypes are decoded by
using MPI_Type_get_envelope() and MPI_Type_
get_content() and their hashed tuple computed dur-

⊕ ≡ ∧ ∆

∧ ∆

⊕

∆

∆

∆

⊕ ≡ ∧ ∆

≡ ∆ ∧

≡ ∧ ∆

≡ ⊕

⊕
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ing the process. Computing the hash value in the case
where there “count” value is greater than one exploits the
log(n) algorithm described by Gropp (2000).

While the simple hash function above is adequate for
detecting mismatches of the basic datatypes, more sophis-
ticated hash functions can be used that are more accurate
for common derived datatypes. For example, see Langou
et al. (2005) where computationally efficient hash func-
tions based on Galois Fields are described and tested
against a collection of MPI derived datatypes.

3.2 Collective Datatype Checking

Because of the different comunication patterns and the
different specifications of the send and receive datatypes
in various MPI collective calls, a uniform method of col-
lective datatype checking is not attainable. Hence five
different procedures are used to validate the datatype
consistency of the collectives. The goal here is to provide
error messages at the process where the erroneous argu-
ment has been passed. To achieve that goal, we tailor
each procedure to match the communication pattern of
the profiled collective call. For convenience, each proce-
dure is named by one of the MPI collective routines
being profiled.

Collective scatter check
1. At the root, compute the sender’s datatype hash

tuple.
2. Use PMPI_Bcast() to broadcast the hash tuple

from the root to other processes.
3. At each process, compute the receiver’s datatype

hash tuple locally and compare it with the hash
tuple received from the root.

A special case of the collective scatter check is when the
sender’s datatype signature is the same as the receiver’s.
This special case can be referred to as a collective
bcast check. It is used in the profiled version of MPI_
Bcast(), MPI_Reduce(), MPI_Allreduce(),
MPI_Reduce_scatter(), MPI_Scan(), and MPI_
Exscan().

The general collective scatter check is used in the profiled
version of MPI_Gather() and MPI_Scatter().

Collective scatterv check
1. At the root, compute the vector of the sender’s

datatype hash tuples.
2. Use PMPI_Scatter() to broadcast the vector

of hash tuples from the root to the corresponding
process in the communicator.

3. At each process, compute the receiver’s datatype
hash tuple locally and compare it with the hash
tuple received from the root.

The collective scatterv check is used in the profiled ver-
sion of MPI_Gatherv() and MPI_Scatterv().

Collective allgather check
1. At each process, compute the sender’s datatype

hash tuple.
2. Use PMPI_Allgather() to gather other senders’

datatype hash tuples as a local hash tuple vector.
3. At each process, compute the receiver’s datatype

hash tuple locally, and compare it with each ele-
ment of the hash tuple vector received.

The collective allgather check is used in the profiled ver-
sion of MPI_Allgather() and MPI_Alltoall().

Collective allgatherv check
1. At each process, compute the sender’s datatype

hash tuple.
2. Use PMPI_Allgather() to gather other senders’

datatype hash tuples as a local hash tuple vector.
3. At each process, compute the vector of the receiver’s

datatype hash tuples locally, and compare this
local hash tuple vector with the hash tuple vector
received element by element.

The collective allgatherv check is used in the profiled
version of MPI_Allgatherv().

Collective alltoallv/alltoallw check
1. At each process, compute the vector of the sender’s

datatype hash tuples.
2. Use PMPI_Alltoall() to gather other senders’

datatype hash tuples as a local hash tuple vector.
3. At each process, compute the vector of the receiver’s

datatype hash tuples locally, and compare this local
hash tuple vector with the hash tuple vector
received element by element.

The difference between collective alltoallv and collective
alltoallw checks is that alltoallw is more general than all-
toallv; in other words, alltoallw accepts a vector of MPI_
Datatype in both the sender and receiver.

The collective alltoallv check is used in the profiled
version of MPI_Alltoallv(), and the collective all-
toallw check is used in the profiled version of MPI_
Alltoallw().

3.3 Usage

In this section we illustrate how users enable the collec-
tive and datatype checking library when linking their
applications in the case of MPICH; for other MPI imple-
mentations, they would follow the appropriate procedures
for linking in profiling libraries.
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The collective and datatype checking library is freely
available as part of MPICH21 in the MPE subdirectory,
along with other profiling libraries. MPE provides con-
venient compiler wrappers to allow for easy access of dif-
ferent profiling libraries. When MPE is installed separately
with non-MPICH2 MPI implementation, for example
IBM’s MPI for BlueGene/L or OpenMPI, two compiler
wrappers, “mpecc” for C program and “mpefc” for Fortran
program, are created. Available MPE profiling options for
“mpecc” and “mpefc” are as follows; the option -mpi-
check invokes the checks described in this paper.

-mpilog   : Automatic MPI and MPE 
            user-defined states logging.
            This links against 
            -llmpe -lmpe.

-mpitrace : Trace MPI program with
            printf.
            This links against -ltmpe.

-mpianim  : Animate MPI program in 
            real-time.
            This links against -lampe 
            -lmpe.

-mpicheck : Check MPI Program with 
            the Collective & Datatype
            Checking library. This links 
            against -lmpe_collchk.

-graphics : Use MPE graphics routines 
            with X11 library.
            This links against -lmpe 
            <X11 libraries>.

-log      : MPE user-defined states 
            logging.
            This links against -lmpe.

-nolog    : Nullify MPE user-defined 
            states logging.
            This links against -lmpe_null.

-help     : Print this help page.

To invoke the collective and datatype checking library,
one can do

mpecc -mpicheck -o mpi_pgm mpi_pgm.c

Since MPICH2 provides a more comprehensive set of
compiler wrappers, (mpicc, mpicxx, mpif77, and
mpif90) than MPE’s, the MPE profiling options are

available through a -mpe=[MPE option] switch provided
by these wrappers, e.g. the following commmand will
link the user program with the collective and datatype
checking library.

mpicc -mpe=mpicheck -o mpi_pgm mpi_pgm.c

3.4 Example Output

We show here sample output (that would appear on
stderr) from the collective and datatype checking
library to indicate an incorrect use of MPI collective call.

Example 1. In this example, we run with four proc-
esses on MPICH2; all but the last process call MPI_
Bcast; the last process calls MPI_Barrier.

Starting MPI Collective and Datatype
  Checking
[cli_3]: aborting job:
Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BARRIER (Rank 3) –>  
  Collective call (BARRIER) is Inconsistent 
  with Rank 0’s (BCAST).

rank 3 in job 4  jlogin1_42089   
  caused collective abort of all ranks
  exit status of rank 3: return code 1

Example 2. In this example, run with four processes on
MPICH2, all but the last process give MPI_INT to
MPI_Bcast; the last process gives MPI_BYTE.

Starting MPI Collective and Datatype 
  Checking
  [cli_3]: aborting job:
  Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) –> 
  Inconsistent datatype signatures 
  detected between rank 3 and rank 0.

rank 3 in job 3  jlogin1_42089   
  caused collective abort of all ranks
  exit status of rank 3: return code 1

Example 3. In this example, run with four processes
on OpenMPI, all but the last process give MPI_INT to
MPI_Bcast; the last process gives MPI_BYTE.

Starting MPI Collective and 
  Datatype Checking
Collective Checking: BCAST –> no error
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Collective Checking: BCAST –> no error
[jlogin1:09505] *** An error occurred in 
  MPI_Comm_call_errhandler
[jlogin1:09505] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:09505] *** MPI_SUCCESS: no errors
[jlogin1:09505] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
Collective Checking: BCAST –> Inconsistent 
  datatype signatures detected between 
  rank 3 and rank 0.

[jlogin1:09513] *** An error occurred in 
  MPI_Comm_call_errhandler
[jlogin1:09513] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:09513] *** MPI_SUCCESS: no errors
[jlogin1:09513] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
Collective Checking: BCAST –> no error
[jlogin1:09509] *** An error occurred in 
  MPI_Comm_call_errhandler
[jlogin1:09509] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:09509] *** MPI_SUCCESS: no errors
[jlogin1:09509] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
[jlogin1:09501] *** An error occurred in 
  MPI_Comm_call_errhandler
[jlogin1:09501] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:09501] *** MPI_SUCCESS: no errors
[jlogin1:09501] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
[jlogin1:09492] [0,0,0]-[0,1,0] 
mca_oob_tcp_msg_recv: readv failed 
  with errno=104
3 additional processes aborted (not shown)

Example 4. In this example, run with four processes on
MPICH2, all but the last process use 0 as the root
parameter in MPI_Bcast; the last process uses its rank.

Starting MPI Collective and 
  Datatype Checking
rank 3 in job 2  jlogin1_42089   
  caused collective abort of all ranks
  exit status of rank 3: killed by signal 9
[cli_3]: aborting job:
Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) –> 
  Root Parameter (3) is inconsistent 
  with rank 0 (0)

Example 5. In this example, run with four processes
on OpenMPI, all but the last process use 0 as the root
parameter in MPI_Bcast; the last process uses its
rank.

Starting MPI Collective and Datatype 
  Checking
Collective Checking: BCAST –> no error
[jlogin1:07718] *** An error occurred 
  in MPI_Comm_call_errhandler
[jlogin1:07718] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:07718] *** MPI_SUCCESS: no errors
[jlogin1:07718] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
Collective Checking: BCAST –> no error
[jlogin1:07725] *** An error occurred 
  in MPI_Comm_call_errhandler
[jlogin1:07725] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:07725] *** MPI_SUCCESS: no errors
[jlogin1:07725] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
Collective Checking: BCAST –> no error
[jlogin1:07729] *** An error occurred 
  in MPI_Comm_call_errhandler
[jlogin1:07729] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:07729] *** MPI_SUCCESS: no errors
[jlogin1:07729] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
Collective Checking: BCAST –> 
  Root  Parameter (3) is inconsistent 
  with rank 0 (0)
[jlogin1:07734] *** An error occurred 
  in MPI_Comm_call_errhandler
[jlogin1:07734] *** on communicator 
  MPI_COMM_WORLD
[jlogin1:07734] *** MPI_SUCCESS: no errors
[jlogin1:07734] *** MPI_ERRORS_ARE_FATAL 
  (goodbye)
3 additional processes aborted (not shown)

4 Experiences

Here we describe our experiences with the collective
error checking profiling library in the areas of usage,
porting, and performance.

After preliminary debugging tests gave us some confi-
dence that the library was functioning correctly, we applied
it to the collective part of the MPICH2 test suite. This set
of tests consists of approximately 70 programs, many of
which carry out multiple tests, which test the MPI-1 and
MPI-2 Standard compliance for MPICH2. We were sur-
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prised (and strangely satisfied, although simultaneously
embarrassed) to find an error in one of our test programs.
One case in one test expected a datatype of one MPI_
INT to match a vector of sizeof(int) MPI_BYTEs.
That is, part of the code to test the use of datatypes con-
tained the fragment:

    sendtype->datatype = MPI_INT;
    sendtype->count    = 1;
    recvtype->datatype = MPI_BYTE;
    recvtype->count    = sizeof(int);

This is incorrect, although MPICH2 allowed the program
to execute.

To test a real application, we linked FLASH (Rosner et al.
2000), a large astrophysics application utilizing many col-
lective operations, with the profiling library and ran one of
its model problems. In this case no errors were found.

A profiling library should be automatically portable
among MPI implementations. The library we describe
here was developed under MPICH2. To check for porta-
bility and to obtain separate performance measurements,
we also used it in conjunction with IBM’s MPI for Blue-
Gene/L (Almási et al. 2003) and OpenMPI2 (Gabriel et
al. 2004), without encountering any problems. However,
we noticed that incorrect MPI collective programs some-
times behaved differently on different implementations.
This is perfectly acceptable, since the MPI Standard does
not specify the behavior of erroneous programs. But it
does make it particularly useful to identify and report
such errors before the actual collective call takes place.

We carried out performance tests on three platforms.
On BlueGene/L, the collective and datatype checking
library and the test codes were compiled with xlc of ver-

sion 8.0 and linked with the IBM’s MPI implementation
(V1R3M1_400_2006-061024) available on BlueGene/L.

The performance of the collective and datatype check-
ing library of a 32-process job is listed in Table 3, where
each test case is linked with and without the collective
and datatype checking library.

Similarly on a IA32 Linux cluster, the collective and
datatype checking library and the test codes were com-
piled with gcc of version 4.0.2 and linked with
MPICH2-1.0.5 and OpenMPI-1.1.2. The performance
results of the library are tabulated in Tables 4 and 5.

Tables 3, 4 and 5, show that the relative cost of the col-
lective and datatype checking library diminishes as the
size of the datatype increases. The cost of collective
checking can be significant when the datatype size is
small. One would like the performance of such a library
to be good enough that it is convenient to use and does
not affect the general behavior of the application it is
being applied to. On the other hand, performance is not
absolutely critical, since it is basically a debug-time tool
and is not likely to be used when the application is in pro-
duction. Our implementation at this stage does still
present a number of opportunities for optimization, but
we have found it highly usable.

5 Future Work

We are pursuing a number of extensions and enhance-
ments to this collective error-checking library. With
respect to the current implementation, we need to for-
ward any error returns from the MPI library to the user
when the error handler is not MPI_ERRORS_ABORT;
this is particularly true when MPI_ERRORS_RETURN
has been selected as the error handler for MPI routines.

Table 3
The maximum time taken (in seconds) among all the processes in a 32-process MPI job on 
BlueGene/L, where count is the number of MPI_Doubles in the datatype, and Nitr refers to the 
number of times the MPI collective routine was called in the test. The underlined digits indicates 
that the corresponding digit could be less in one of the processes involved.

Test Name count × Nitr No CollChk With CollChk

MPI_Bcast 1 × 10 0.000028 0.001543

MPI_Bcast 1K × 1 0.000031 0.000424

MPI_Bcast 128K × 1 0.003121 0.032495

MPI_Allreduce 1 × 10 0.000063 0.001898

MPI_Allreduce 1K × 1 0.000136 0.000543

MPI_Allreduce 128K × 1 0.009167 0.038532

MPI_Alltoallv 1 × 10 0.000423 0.002264

MPI_Alltoallv 1K × 1 0.000175 0.000812

MPI_Alltoallv 128K × 1 0.015522 0.074069
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In an MPI-2 environment, we can reduce the cost of
comparing datatype signatures by making use of the
attribute caching functions to save the hash value on the
MPI datatype; thus we only need to compute the hash func-
tion once for a derived datatype. This can be done when the
datatype is commited with MPI_Type_commit, reduc-
ing the cost within the collective routines.

A similar approach for detecting datatype mismatches
can be applied to point-to-point operations. In this case,
we would also like to enable the option of an implemen-
tation-specific approach, as it is relatively easy to include
the datatype hash value in the message envelope used
within the MPI implementation. Of course, we will pro-
vide a fully portable version that does not rely on inter-
facing with the internals of the MPI implementations.

One weakness of our approach is that it assumes that
all processes in the communicator are calling a collective
operation. While we do check for the error of calling dif-
ferent collective operations on the same communicator,

we do not check for calling collective operations on dif-
ferent communicators. For example, consider this code
fragment in a single-threaded program:

    MPI_Comm_split( ..., &comm1 );
    MPI_Comm_split( ..., &comm2 );
    if (rank < size/2) {
        MPI_Bcast( ..., comm1 );
        MPI_Bcast( ..., comm2 );
    }
    else {
        MPI_Bcast( ..., comm2 );
        MPI_Bcast( ..., comm1 );
    }

While something so clearly wrong is unlikely to occur so
obviously in a code, this set of collective operations could
occur as a result of complex (and erroneous) logic in man-
aging several communicators, such as communicators for

Table 4
The maximum time taken (in seconds) on a 32-process MPICH2 job on Jazz, an IA32 Linux cluster.

Test Name count × Nitr  No CollChk With CollChk

MPI_Bcast 1 × 10 0.040800 0.178053

MPI_Bcast 1K × 1 0.011457 0.045029

MPI_Bcast 128K × 1 0.197951 0.240698

MPI_Allreduce 1 × 10 0.006159 0.111160

MPI_Allreduce 1K × 1 0.005569 0.047161

MPI_Allreduce 128K × 1 0.304521 0.341304

MPI_Alltoallv 1 × 10 0.001572 0.093878

MPI_Alltoallv 1K × 1 0.003105 0.042199

MPI_Alltoallv 128K × 1 0.270906 0.293240

Table 5
The maximum time taken (in seconds) on a 32-process OpenMPI job on Jazz.

Test Name count × Nitr  No CollChk With CollChk

MPI_Bcast 1 × 10 0.043394 0.157876

MPI_Bcast 1K × 1 0.009069 0.044477

MPI_Bcast 128K × 1 0.160046 0.181880

MPI_Allreduce 1 × 10 0.051406 0.176388

MPI_Allreduce 1K × 1 0.230335 0.274223

MPI_Allreduce 128K × 1 1.624644 1.660873

MPI_Alltoallv 1 × 10 0.010516 0.207629

MPI_Alltoallv 1K × 1 0.010338 0.046493

MPI_Alltoallv 128K × 1 0.348700 0.357958
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row and column computations in a matrix. Our library
will not catch these; instead, a deadlock will occur within
the collective operations that we use to implement the
checks. To catch these errors, it is necessary to use point-
to-point operations on a private communicator. In MPI-1
programs, this can be accomplished by creating a dup of
MPI_COMM_WORLD and using a point-to-point imple-
mentation of an Allreduce operation to compare a com-
municator id, also maintained by the colcheck library, to
ensure that collective operations are properly ordered in
the MPI code. By using nonblocking operations and imple-
menting a time-out, we can also handle errors where
some processes do not make a collective call at all, as in
this example:

   if (rank == 0) MPI_Bcast( ..., 0, 
                  MPI_COMM_WORLD );
   else           MPI_Recv( ..., 0, 
                  MPI_COMM_WORLD );

(This error is seen when a user uses MPI_Bcast as if it
is a “SendAll” instead of an MPI collective operation.)

Multithreaded programs introduce additional complex-
ity. For example, the above mechanism for detecting mis-
matched use of communicators in collective calls is no
longer valid because different threads are permitted (and
in fact are encouraged) to make MPI collective calls on
different communicators. Detecting user errors, such as
the use of MPI_Bcast as a “SendAll”, will require either
a timeout check (with an arbitrary, user-controllable time-
out period) or more sophisticated deadlock detection, such
as determining that every MPI thread (not just process) is
in a blocking wait.

Finally, while the performance overhead for this pro-
filing library is probably acceptable for use in testing
rather than production runs, the current implementation
admits of optimizations that have not yet been carried
out. The optimizations with the most impact are those
which will reduce the number of “extra” collective oper-
ations carried out by the checking library.

6 Summary

In this paper we have described an effective technique for
MPI programmers to use for detecting easy-to-make but
hard-to-find mistakes that often lead to deadlock, incor-
rect results, or worse. The technique demonstrates an
important use of the MPI “profiling library” idea. We
have demonstrated the library’s portability by running it
with three different MPI implementations and measuring its
performance. We have implemented the datatype hashing
algorithm presented elsewhere and demonstrated its
effectiveness. Our final section outlined future improve-
ments that are under way.
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